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PROJECT SUMMARY

Overview:

Page A

This project will develop and evaluate principled techniques that learn the Lego-like building
blocks of real world networks. Then, these network patterns will be used to gain insights
into the mechanisms that underlie network structure and evolution. 

The ideas in this proposal originate from a newfound relationship between graph theory and
formal language theory discovered by the PI and his collaborators. The relationship between
graph theory and formal language theory allows for a Hyperedge Replacement Grammar (HRG) to
be extracted from any graph without loss of information. Like a context free grammar, but
for graphs, the extracted HRG contains the precise building blocks of the network as well
as the instructions by which these building blocks ought to be pieced together.  Because of
the principled way it is constructed, the HRG can even be used to regenerate an isomorphic
copy of the original graph. By marrying the fields of graph theory and formal language theory,
lessons from the previous 50 years of study in formal language theory, grammars, and much
of theoretical computer science can now be applied to graph mining and network science! This
proposal takes the first steps towards reconciling these disparate fields by asking incisive
questions about the extraction, inference, and analysis of network patterns in a mathematically
elegant and principled way.

This project will also support educational and outreach programs that will broaden participation
in computer science. Open source software implementing the new algorithms will be made available
to the public, and will also be made to serve as an educational tool. Research supervision
and career mentoring will be made available to K-12 students through the development and publication
of science fair projects in computing, and undergraduate and graduate student training will
be offered through a new course in data and network science. The proposed collaborations and
interdisciplinary nature of the proposed research will allow for a wide distributions of the
ideas and results, which will be presented through tutorials, workshop organization, and through
scholarly publications at international venues.

Intellectual Merit :
This proposal will substantially advance the state of the art in graph mining in three specific
ways. (1) The PI will create precise and principled algorithms for structure discovery, extraction,
sampling, and robust evaluation for static and dynamic graphs, (2) The extracted structures
will be used to infer the future growth or hidden structure of the network, and (3) The discovered
structures will be analyzed and mapped to real world mechanisms of network structure and growth.
The proposal will also accelerate collaboration with chemical, social and natural language
scientists in produce practical applications to real world data sets. Most importantly, these
objectives will lay the foundation for extensive follow-up work and facilitate broad scientific
impact.

Broader Impacts :
The discovery and analysis of network patterns is central to the scientific enterprise. Thus,
extracting the useful and interesting building blocks of a network is critical to the advancement
of many scientific fields. Indeed the most pivotal moments in the development of a scientific
field are centered on discoveries about the structure of some phenomena. For example, chemists
have found that many chemical interactions are the result of underlying structural properties
of the interactions between elements, and biologists have agreed that tree structures are
useful when organizing the evolutionary history of life. Thus, graph mining research promises
to give new insights into the principles of chemistry, evolution, and ecology to name a few.
Principled strategies for extracting these complex patterns are needed to discover the precise
mechanisms that govern network structure and growth. This is exactly the focus of this project.
Graph mining research has scientific applications of societal importance, such as new drug
therapies, knowledge networks, and natural language understanding, which will be explored
as part of this project. In addition, this project will result in the formation of new interdisciplinary
scientists, career mentoring, graduate and undergraduate research, and the development of
science fair projects in computing for K-12 students, focusing on economically disadvantaged
youth.
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CAREER: Principled Structure Discovery for Network Analysis
Tim Weninger (tweninge@nd.edu)

1 Introduction
The long term goal of the PI is to develop, study, and evaluate fundamentally new techniques for the

discovery of interesting structural patterns and their function within real world networks while integrating

educational and outreach programs that inspire future data mining practitioners and researchers. The goal

of this CAREER proposal is to develop and evaluate principled techniques that learn the lego-like building

blocks of real world networks. Then, these network patterns will be used to gain insights into the mecha-

nisms that underlie network structure and evolution.

The ideas in this proposal originate from a newfound relationship between graph theory and formal

language theory discovered by the PI and his collaborators. The relationship between graph theory and

formal language theory allows for a Hyperedge Replacement Grammar (HRG) to be extracted from any

graph without loss of information. Like a context free grammar, but for graphs, the extracted HRG contains

the precise building blocks of the network as well as the instructions by which these building blocks ought to

be pieced together. Because of the principled way it is constructed, the HRG can even be used to regenerate

an isomorphic copy of the original graph.5 By marrying the fields of graph theory and formal language

theory, lessons from the previous 50 years of study in formal language theory, grammars, and much of

theoretical computer science can now be applied to graph mining and network science! This proposal takes

the first steps towards reconciling these disparate fields by asking incisive questions about the extraction,

inference, and analysis of network patterns in a mathematically elegant and principled way.

The discovery and analysis of network patterns is central to the scientific enterprise. Thus, extracting the

useful and interesting building blocks of a network is critical to the advancement of many scientific fields.

Indeed the most pivotal moments in the development of a scientific field are centered around discoveries

about the structure of some phenomena.63 For example, chemists have found that many chemical interac-

tions are the result of underlying structural properties of interactions between elements.25, 29 Biologists have

agreed that tree structures are useful when organizing the evolutionary history of life,30, 56 sociologists find

that triadic closure underlies community development,32, 44 and neuroscientists have found “small world”

dynamics within neurons in the brain.12, 15 In other instances, the structural organization of the entities

may resemble a ring, a clique, a star, a constellation, or any number of complex configurations. Unfortu-

nately, current graph mining research deals with small pre-defined patterns57, 77 or frequently reoccurring

patterns,27, 48, 55, 64–66 even though interesting and useful information may be hidden in unknown and non-

frequent patterns. Principled strategies for extracting these complex patterns are needed to discover the

precise mechanisms that govern network structure and growth. This is exactly the focus of this project: to
develop and evaluate techniques that learn the building blocks of real world networks that, in aggre-
gate, succinctly describe the observed interactions expressed in the network.

The key insight for this task, described in detail in Section 2.3, is that a network’s clique tree (also

known as the tree decomposition, junction tree, intersection tree, or cluster graph, depending on the context)

encodes robust and precise information about the network. An HRG, which is extracted from the clique tree,

contains graphical rewriting rules that can match and replace graph fragments similar to how a Context Free

Grammar (CFG) rewrites characters in a string. These graph fragments represent a succinct, yet complete

description of the building blocks of the network, and the rewriting rules of the HRG represent the instruc-

tions on how the graph is pieced together. Although the isomorphic guarantees are exciting and important,

this proposal will focus instead on finding meaning in the building blocks and their instructions.

This proposal will substantially advance the state-of-the-art in graph mining in three specific ways: (1)

The PI will create precise and principled algorithms for structure discovery, extraction, sampling, and robust
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evaluation for static and dynamic graphs, (2) The extracted structures will be used to infer the future growth

and hidden structure of the network, and (3) The discovered structures will be analyzed and mapped to real

world mechanisms of network structure and growth. This proposal will also accelerate collaboration with

chemical, social, and natural language scientists to produce practical applications of principled structure

discovery on real world data.

Education and Outreach In parallel to these research objectives, this proposal will launch educational

initiatives that promote critical thinking, boost recruitment, and broaden the appeal of data science to new

audiences. To that end, the PI will dedicate time and resources to teaching and mentoring undergraduate and

graduate students while also enhancing K-12 curricula through a collaboration with the Northern Indiana

Regional Science and Engineering Fair (NIRSEF) as well as local public school math and science teachers.

Data mining and network science are ideal fields for developing STEM researchers due to their inherently

interdisciplinary nature and for being some of the fastest growing and in-demand fields worldwide. The

educational vision is of a large, diverse, and talented pool of scientists presenting cutting edge research

where: (1) Primary and secondary school children experiment with and present science fair projects in

computing, and (2) a robust and meaningful relationship is crated between high school students from under-

represented groups and university scholars that will motivate and support both students and researchers

throughout their careers.

1.1 Context and Long Term Objectives
The PI’s past and current research experiences are well suited to successfully perform the proposed

work. Graduate training at the University of Illinois Urbana-Champaign, sponsored by the NSF GRFP and

NDSEG fellowships, provided a strong background in data mining and network science. At the intersection

of these fields, the PI has contributed to the development of data mining tools that are capable of uncovering

interesting and useful patterns that are hidden in graphical data.49–51, 58, 124, 125 For example, research during

graduate school resulted in algorithms that uncovered hidden hierarchical structures comprising knowledge

graphs like Wikipedia, citation networks and most Web sites.75, 111, 113–115, 117 As an Assistant Professor at

the University of Notre Dame, the PI continues to apply this philosophy while working with the Air Force

Office of Scientific Research on patterns of social media behavior (FA9550-15-1-0003, project ends July

2017),110, 116, 119 and with the Templeton Foundation on network structures in knowledge graphs (FP053369-

M/O, project ended May 2016).4, 94–97 Although similar in their underlying principles, the past projects do

not overlap with the objectives of this proposal.

2 Background and Related Work
2.1 Graph Mining

For the purposes of the current proposal, graph mining technologies can be divided into two classes: (1)

subgraph mining algorithms and (2) graph generating models.

Subgraph Mining Rooted in data mining and knowledge discovery, subgraph mining methods are efficient

and scalable algorithms for traditional frequent itemset mining on graphs.43, 54 Frequent graph patterns are

subgraphs that are found from a single large graph or a collection of many smaller graphs. A subgraph

is deemed to be frequent if it appears more than some user-specified support threshold. Being descriptive

models, frequent subgraphs are useful in characterizing graphs and can be used for clustering, classifica-

tion or other discriminative tasks. Because of their nature, these methods have a so-called “combinatorial

explosion” problem106 wherein the search space grows exponentially with the pattern size. This causes com-

putational headaches, but also returns a massive result set that hinders real world applicability. Recent work

that heuristically mines graphs for important or representative subgraphs have been developed in response,

but are still limited by their choice of heuristic.76, 84, 103, 120 Alternatively, researchers characterize a network
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by counting small subgraphs called graphlets, and therefore forfeit any chance of finding larger, more inter-

esting structures.8, 78, 86 Overcoming these limitations will require a principled approach that discovers the

structures within graphs and is the first research objective of the proposed work.

Graph Generators Graph generators, like frequent subgraph mining, find distinguishing characteristics of

networks, but go one step further by generating new graphs that “look like” the original graph(s). What a

graph looks like includes local graph properties like the counts of frequent subgraphs described above, but

can also include global graph properties like the degree distribution, clustering coefficient, diameter, and

assortativity among many others. Early graph generators, like the random graph of Erdős and Reyni,33 the

small world network of Watts and Strogatz,109 or the scale free graph of Albert and Barabási,11 did not

learn a model from a graph directly, but rather had parameters that could be tuned to generate graphs with

certain desirable properties. Recent work in exponential random graphs,90 Kronecker graphs,17, 71 Chung-Lu

graphs,23 and their many derivatives61, 82, 83, 85 create a model from some example graph in order to generate

a new graph that has many of the same global properties as the original graph.

Despite their conceptual similarity, subgraph mining algorithms and graph generators have little in com-

mon algorithmically. Simply put, they solve different problems. Although Kronecker and Chung-Lu graph

generators learn their model from an exemplar graph, only the exponential random graph (ERG) model actu-

ally learns a model based on the specific patterns and structures found in the graph. Unfortunately, the ERG

model must pre-define the space of possible structures, and the complexity of the ERG model is exponential

in the number and size of the pre-defined structures. The standard ERG model is not good at generating

new graphs; however the learned model can be informative about the nature of the underlying graph, albeit

through the lens of only a handful of small structures, e.g., edges, triangles, 4-cliques.41 The proposed work

will bridge the gap between subgraph mining and graph generation to create a new suite of models and tools

that can not only create informative models of real world data, but also generate, extrapolate, and infer new

graphs in a precise, principled way.

2.2 Clique trees and Hyperedge Replacement Grammars
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Figure 1: Example hypergraph and common graph representation (on left).

A clique tree (middle) is constructed from an elimination ordering over the

graph. An expanded view of the clique tree (on right) shows constituent

subgraphs with triangulated edges labeled with a �.

In graph theory, all graphs

can be decomposed (though not

uniquely) into a clique tree.62 A

clique tree of any graph (or any hy-

pergraph) is a tree, each of whose

nodes is labeled with nodes and

edges from the original graph, such

that vertex cover, edge cover and

the running intersection properties

hold,89 and the “width” of the opti-

mal clique tree measures how tree-

like a graph is. The reason for the

wide interest in finding the clique

tree of a graph is because many computationally difficult problems can be solved efficiently when the data

is constrained to be a tree; so by decomposing the graph into a clique tree certain problems can be solved ef-

ficiently. Figure 1 illustrates the clique tree of a graph, and how the expanded clique tree represents patterns

in the network.

Within data mining and machine learning, clique trees are best known for their role in exact inference

in probabilistic graphical models, constraint satisfaction, and query optimization. Unfortunately, finding the

optimal, i.e., the minimal-width, clique tree is NP-Complete.9 However many reasonable approximations

exist for general graphs13, 105 and the discovery of better algorithms is an active area of research in discrete

3



3 4

5
�

4
5 6
�

5 6�

a b
N

Rule

a

b x

T1

T2

N

1 2

3 4

5 6

T1

T2

a

b

n1 n2

n1 n2

Clique Tree (subtree) LHS RHS Original Graph

Extraction of Rule 4

S
Rule 1

N

yx

z

T
T

N

a b

c

N
Rule 2

a b

c

x

T T

N

a b
N

Rule 3

a

b

x T

T
a b

N
Rule 4

a

b x
T

T

N

a b
N

Rule 5
a bN a

N
Rule 6 a

Hyperedge Replacement Grammar

Figure 2: Example extraction of an HRG rule from the clique tree (on left). Full HRG with six rules extracted from

the clique tree (on right). denotes new nodes created by a RHS labeled with x, y, z, etc., denotes existing nodes

that match earlier rules via the sepset labeled with a, b, etc.

mathematics.3, 74, 80

HRGs are a graphical counterpart to context free string grammars used in compilers and natural language

processing.31 Like in a context free string grammar, an HRG contains a set of production rules P , each of

which contains a left hand size (LHS) A and a right hand size (RHS) R. In context free string grammars,

the LHS must be a nonterminal character, which can be replaced by some set of nonterminal or terminal

characters on the RHS of the rule. In HRGs, nonterminals are graph-cliques and a RHS can be any graph

(or hypergraph) fragment.

Just as a context free string grammar generates a string, an HRG can generate a graph by repeatedly

choosing a nonterminal A and rewriting it using a production rule A → R. The replacement hypergraph

fragment R can itself have other nonterminal hyperedges, so this process is repeated until there are no more

nonterminals in the graph.

Clique trees and HRGs have been studied separately for some time in discrete mathematics and graph

theory literature. HRGs are conventionally used to generate graphs with very specific structures, e.g., rings,

trees, stars. A drawback of many current applications of HRGs is that their production rules must be man-

ually defined. For example, the production rules that generate a ring-graph are distinct from those that

generate a tree, and defining even simple grammars by hand is difficult or impossible. Very recently, Kemp

and Tenenbaum developed an inference algorithm that learned probabilities from real world graphs, but they

still relied on a handful of rather basic hand-drawn production rules (of a related formalism called vertex

replacement grammar) to which probabilities were learned.57 Kukluk, Holder and Cook were able to define

a grammar from frequent subgraphs,27, 48, 64–66 but their methods have a coarse resolution because frequent
subgraphs only account for a small portion of the overall graph topology.

2.3 The Missing Link
The work proposed in this CAREER proposal is based, in part, on the relationship between a clique tree

of a graph and HRGs. This relationship was first introduced theoretically by Lautemann in 1988,69 but did

not have an algorithmic solution until Gildea found a limited algorithmic solution in 2011 for use in grammar

parsing39 that was adapted by Chiang et al. to parse natural language.22 Very recently, the PI developed a

general solution to this challenge that allows an HRG to be extracted from any graph or hypergraph in a

principled way, and that HRG can be used to generate an isomorphic copy of the original graph.5

The details of the algorithmic solution are straightforward, but they are not presented in this proposal.

Instead, a small example of the extraction process is illustrated on the left side in Fig. 2. Here a production

rule is created from the perspective of a node in the clique tree from Fig. 1. The LHS is a nonterminal
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hyperedge with a size equal to the size of the sepset between the current node and its parent; the RHS

contains nonterminal hyperedges corresponding to the sepset between the current node and its children, and

terminal hyperedges that are copied from the original graph. Because they correspond to the sepset of a

child-node, nonterminal edges can be further replaced by rules created further down the clique tree. Leaf

nodes in the clique tree must therefore produce a RHS with only terminal edges. This process will produce

one rule for every clique tree node in a top-down manner; e.g., the six nodes in the clique tree produce the

six rules illustrated on the right of Fig. 2.

Unlike existing approaches, an ordered application of the rules in the extracted grammar will produce an

isomorphic copy of the original graph, even if the clique tree is non-optimal. To see that this is the case, start

with Rule 1 from the HRG in Fig. 2 and apply each rule in order. The result, shown in Fig. 4 on Page 8 will

be isomorphic to the original graph. Unfortunately, keeping the proper rule ordering takes as much space as

the original graph. However, the extracted rules can also be applied stochastically to generate, extrapolate,

or otherwise create new graphs that share properties that are similar to the original graph.

These are very exciting results. This newfound ability to extract a grammar from a graph has the ability

to merge two large fields of computer science. Network scientists and graph mining researchers can use

principles discovered by formal language researchers and theorists; and formal language researchers may

be able to apply graphical principles to their work.

Work has just begun. There are several avenues that bare the potential for groundbreaking scholarship.

As a graph mining researcher, the PI will lead a research effort that not only solves important challenges,

but also proposes new ones and forms partnerships to explore and understand these topics.

3 Research Plan
The research goal of this CAREER proposal is to study, develop, characterize, and evaluate techniques

that use HRGs to discover and understand the structure and growth of real world networks in a principled

way. To support this goal, the following objectives will be accomplished:

Objective 1: Precise and complete structure discovery, including extraction, sampling, and robust eval-

uation protocols will be developed and vetted.

Objective 2: Principled graph generation will be demonstrated and studied using the discovered struc-

tures on static and evolving data.

Objective 3: An analysis of the discovered structures and their relationships to real world phenomena

will be theoretically studied and experimentally evaluated.

3.1 Project Overview
To achieve precise and complete structure discovery of a real world network, two essential requirements

must be met within a single system:

i. The building blocks, i.e., small subgraphs, that comprise any real world network must be efficiently

and exactly captured in the model, and

ii. The model must represent the local and global patterns that reside in the data.

The first requirement overcomes limitations that are found in state-of-the-art graph mining algorithms.

By extracting an HRG from the graph’s clique tree the model will capture all the necessary graph building

blocks. The second requirement is met by the relationship between graphs and context free grammars.

Because of the significance of the proposed work, there is an enormous amount of research that needs to be

done. Among the many possibilities, the three objectives detailed in this CAREER proposal were chosen

because they have the most potential for broad impact and open the door for the widest followup work.

It is important to note that the success of each task is not dependent on the success of any other task.

Many tasks could be executed in parallel, but individual progress will be measured and evaluated separately,
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Figure 3: How research tasks interact and benefit from each other.

and then integrated into a single system. Following current lab practices, system design and implementation

will be open source and will incorporate continuous feedback from collaborators.

This project does not involve human or animal subjects. However, the PI does have experience with

IRB protocol and will receive prior approval if necessary.

Objective 1: Network Structure Extraction
A hyperedge replacement grammar (HRG) is able to represent any graph (or hypergraph) structure, but not

uniquely. That is, a single graph can be represented by many different clique trees, and even an optimal

clique tree may not be unique. Production rules are directly extracted from the clique tree, so it is important

to understand how the choice of tree decomposition algorithm and the shape of the clique tree affects the

grammar.

Task 1.1: Model Stability
Finding an optimal tree decomposition and corresponding minimal-width clique tree is NP-Complete.9, 122

Fortunately, many reasonable approximations exist for general graphs. The PI’s preliminary work employed

the commonly used maximum cardinality search (MCS) algorithm introduced by Tarjan and Yannikakis105

in 1985. MCS is a straightforward algorithm that creates a reasonable, but probably non-optimal, clique

tree. A surge in recent theoretical and application-oriented projects has made a tremendous impact by find-

ing bounded and near-optimal heuristics for real-world graphs.3, 14, 18, 20 Each tree decomposition algorithm

has certain heuristics and implementation decisions that are unavoidable; these decisions may introduce

bias, which may affect the shape of the clique tree. For example, the MCS algorithm chooses an elimination
ordering, i.e., the ordering of nodes in the clique tree, based, in part, on the number of edges each node has.

Because the HRG is directly extracted from the clique tree, the choice of tree decomposition algorithm

raises several questions: (1) How much does the choice of tree decomposition algorithm affect the shape

of the clique tree? (2) How similar (or dissimilar) are the clique trees produced by multiple runs of a tree

decomposition algorithm? and (3) How stable is the extracted HRG given various clique trees, i.e., do

different clique tree produce the same or different HRGs?

A goal of this task is to understand the relationship between a tree decomposition algorithm, its clique

tree, and the extracted HRG. The choice of tree decomposition algorithm, shape of the clique tree, and the

extracted HRG will be rigorously investigated using tree distance metrics, and standard statistical analysis.

Even though the resulting clique trees may prove to be of different shapes, the extracted HRG may still be

stable because the node labels are not copied into the grammar. It is therefore possible, even likely, that

different clique trees will still produce very similar HRGs.
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No matter the outcome, further interesting questions can be asked and answered. Because of the HRG-

to-graph relationship, if the extracted HRGs are indeed vastly different, then the production rules that do

overlap will be uniquely informative about the nature of the data. If the extracted HRGs are similar, then the

extracted HRG will be uniquely representative of the data.

Evaluation Plan The PI possesses hundreds of graph datasets originating from public online resources like

SNAP, KONECT and the UCI Repository, as well as several graph decomposition algorithms that can be

used in experimental tests.3, 13, 14, 74, 122 To answer questions about stability, a principled notion of tree and

grammar similarity is required. Many principled metrics exist for tree similarity,121 but the PI will need to

make some adaptations to account for items unique to a clique tree like the sepset. Comparing grammars

is one area where results from formal language theory may be helpful. Unfortunately, the problem of

determining whether two different grammars produce the same string is undecidable,47 which means that

exact comparison between HRGs is undecidable. Nevertheless, just as in formal language theory, many

approximate similarity methods exist for CFGs that can be adapted for HRGs.68

Here the central theme of this CAREER proposal is evident: the PI will be able to adapt and leverage
ideas and approaches from computational and formal language theory to solve difficult challenges in
graph mining and network analysis.

Task 1.2: Subgraph Sampling
Despite their relative efficiency, near-optimal tree decomposition algorithms can still be impractical on

very large graphs. Rather than computing the clique tree and HRG from a graph in its entirety, it is possible

to create many small HRGs from subgraph samples of the original graph and merge the sampled-HRGs into

a single, representative HRG. Of course, sampling almost certainly eliminates the possibility of regenerating

an isomorphic copy of the original graph, but it opens the door for many interesting questions: (1) What

would it mean if the HRGs from various subgraph samples are similar? What if they are different? (2) How

should small HRGs be merged to create a large, representative HRG? and (3) Does a sampled-and-merged

HRG look similar to an HRG created from a full, non-sampled clique tree?

The goal of this task is to answer these questions by experimenting with different subgraph sampling and

merging regimens. Subgraph sampling is an active area of research from which several principled algorithms

can be drawn.7, 52, 72, 93 Many existing subgraph sampling algorithms try to find samples that share properties

of the global network, only on a smaller scale. Other algorithms look for representative samples that find

subgraphs that have a wide range of properties. Naı̈ve sampling methods simply perform a random walk

or breadth first search starting at random nodes.107 The choice of sampling algorithm is sure to affect the

structures present in the extracted HRG, and the findings from the HRG Stability Task (1.1) will provide a

robust understanding of structure extraction in general.

Merging several HRGs created from subgraph samples of the same graph is another important decision

that needs to be understood. The naı̈ve way is to perform a type of set-union operator to create a single, large,

hopefully representative HRG. A more principled approach can again be found by leveraging the methods

and theorems from formal language theory, where model merging (and splitting) of CFGs has been heavily

investigated.67, 102

Evaluation Plan Different subgraph sampling algorithms will be evaluated by comparing subgraph HRGs

to each other, and by comparing the merged HRG to an HRG created from a non-sampled graph. Ideally,

the merged HRG will resemble the non-sampled HRG, and the HRG comparison method created in Task

1.1 will be employed here to quantify the similarity. Higher similarity is better. In cases where the full HRG

cannot be computed, due to massive size or other constraints, the PI will use downstream tasks such as those

described in Objectives 2 and 3 to further evaluate the sampled grammar.
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Figure 4: Ordered application of rules from the HRG in Fig. 2 creates an isomorphic copy of the original graph.

Risk Management Graph sampling techniques are well understood within the graph mining community,

but finding a principled way to merge HRGs may prove to be a difficult task. The notion of substitutability
will be especially helpful for a proper merge operation,24, 28 but the key will be to find an algorithmic solution

that is efficient on HRGs. If needed, the set-union operator will suffice for downstream tasks, although the

model size would probably have redundant rules and patterns.

Objective 2: Network Inference
The second objective will explore network inference, that is, the generation, extrapolation, and prediction of

networks based on an example graph. This is an important objective because many networks are incomplete

or are subsets of the whole data. In other cases, privacy concerns or ethical obligations prohibit the release

of the whole or exact network. For example, although Facebook is unwilling to make their entire social

network public, they may be willing to release an HRG, which can be used to closely, although not exactly,

represent the social network. Finally, many networks are not done growing. By understanding the exact

patterns of network development, a temporal HRG may be able to predict future network growth.

Task 2.1: Applying Production Rules to Generate Static Graphs
An isomorphic copy of the original graph can only be reconstructed if a traversal ordering over the clique

tree is kept. Figure 4 illustrates this rewriting process using a perfect ordering. This is not practical or even

desired under many conditions, so it is important to understand when and how production rules are picked

when running a simulation or building a new graph. A random application of rules is unlikely to be helpful

because the user will have no control over how big the network will grow. An unlucky draw of mostly

terminal rules, i.e., rules that do not have any nonterminal edges like Rule #3 or Rule #6 from the example

HRG in Fig. 2, will result in a very small graph. Conversely, an unlucky drawing of nonterminal rules may

cause a graph to grow uncontrollably to a massive size. This raises critical questions: (1) How should rules

be chosen in order to maximize the similarity of the generated graph with the original graph? and (2) Can

an HRG extracted from a graph sample (or many samples) be used to generate a new graph that is similar to

the whole, original graph?

To answer the first question the PI will, yet again, leverage recent discoveries in formal language theory.

In this case, an exact-size graph can be generated by adapting algorithms on probabilistic context free

grammars (PCFGs),19, 59 which is currently used to generate exact-length sentences in natural language

processing tasks1, 21, 37, 100, 101 and has also been adapted for generating nucleic acid sequences.60 Rather than

randomly or stochastically drawing production rules, a graphical adaptation of PCFGs will be able to create

a graph with a user-specified number of nodes or edges. Furthermore, because of their close relationship to

Markov models, graphical PCFGs will be able to model the generative process in limited, but informative

ways. For example, a graphical PCFG may re-discover processes, like Yule’s preferential attachment,126

Watts’ random reattachment,108, 109 or some other undiscovered process, in a sound, principled manner.
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Evaluation Plan Production rule applications will be compared to other state-of-the-art graph generators

including the exponential random graph model,90 the Chung Lu model23 (and its derivatives), the Kronecker

model,71, 73 and other graph generators. Using a broad corpus of real world networks retrieved from online

repositories such as SNAP or KONECT as well as those collected through the PI’s collaborators (see page

12). Evaluation will be performed by comparing many global and local graph properties including the degree

distribution, the principle eigenvector, clustering coefficient, diameter, hop plot, and many others.

These network properties primarily focus on statistics of the global network. However, there is mounting

evidence that argues that a comparing two networks’ graphlet distributions is a better way to measure the

network similarity. Graphlets succinctly describe the number of small, local substructures that compose the

overall graph and therefore more completely represent the details of what a graph “looks like”.86 Recent

work from systems biology has identified a new metric called the Graphlet Correlation Distance (GCD) that

measures the distance between the graphlet distributions of two graphs.123 As an example, the plots in Fig. 5

show preliminary results comparing ArXiV’s GR-QC collaboration network H against graphs generated via

a random drawing of rules from an extracted HRG, as well as graphs generated with the Chung-Lu and

Kronecker models.

The PI will further test subgraph sampling and grammar robustness using similar methodology, and with

special attention paid to the local structures of the generated graph. Graph extrapolation will be evaluated

by extracting an HRG from a subgraph of the original graph, generating a new graph of the full size, and

comparing the original graph to the generated graph. Grammar robustness will be evaluated by recursively

extracting a grammar from a generated graph. Recent work by the PI argues that this recursive generation

test could also be used as a performance metric for graph generator robustness in general.6

Task 2.2: Applying Production Rules to Grow Dynamic Graphs
It is important to remember that a grammar extracted from a static graph can only speculate on the

processes that may have generated the graph. The actual growth patterns can only be modelled in the

presence of temporal data, where the addition or deletion of nodes and edges are shown in chronological

order or marked with a timestamp. The addition of a temporal component raises interesting questions:

(1) How can HRGs be adapted to model evolving graphs? (2) Can growth patterns be extracted from the

grammar? and (3) Can temporal HRGs be used to predict the future topology of a graph?

To answer these questions, the PI will investigate temporal HRG extraction. Because evolving graphs

add their nodes and edges a few at a time, there will be no need to perform a tree decomposition to find a

clique tree. Instead, a change in the graph is analogous to the traversal of an edge in a clique tree: see Fig. 6

for an example. Just as with sepsets in the clique tree, the new LHS will need to be added to a RHS in some

previous production rule. Due to the running intersection property, graph updates may need to propagate

through much of the grammar. This could be a laborious task. The addition of a single edge is easy to

extract, but not very informative; temporal binning of the network updates will also need to be explored in
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order to extract reasonable production rules. Even with evolving networks, there may be lessons to learn

from formal language theory where CFGs have been used in timeseries analysis.81, 91
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With a temporally extracted HRG the answer to the

second question will become more clear. An ordered

application of the HRG rules will result in an isomor-

phic copy of the original graph. But, most importantly,

the order of production rules will show how and when

certain important structures were formed, e.g., how a

wedge became a triangle, how two nodes crept topolog-

ically closer and closer together before finally connect-

ing, or how any number of complex configurations came

into being. By adding a short memory to a Markov chain

of production rules, graph inference will be performed

by applying the graph’s own growth patterns. The PI

will use this information to extract new and interesting

temporal patterns that govern the generative processes

that build real world networks.

Evaluation Plan An evaluation of the proposed approaches will answer the third question: can temporal

HRGs predict the future of a graph? By understanding the patterns and processes that generated a graph to

time t, the PI will be able to probabilistically re-apply production rules to generate predictions of the future

evolution of the graph. Validation will be performed by hiding the last k timesteps, generating an HRG, and

predicting the final k timesteps. Precision and recall metrics will be adapted to measure the performance.

Risk Management It is easy to naively generate graphs from HRGs, c.f., Fig. 4. The adaption of string

grammar algorithms on PCFGs will require effort, but is a low risk task. In dynamic graphs, propagating

new rules through the grammar is an algorithmically expensive task. If this task proves too expensive, it is

possible to extract rules by working backwards in time, but this may require significant memory. If needed,

a forward-backward hybrid approach will be created to fit computational and memory bounds.

Objective 3: Pattern Analysis
The number of rules, even unique rules, that are extracted from a single graph can be quite large. Estab-

lishing a tradeoff between model size and accuracy via some sparsity condition or sampling procedure may

be warranted in certain conditions. Furthermore, the “important” rules in a reduced model are likely to

reveal interesting properties about real world phenomena that were previously hidden. The potentially large

number of HRG rules poses several interesting challenges: (1) What are the effects of subgraph sampling

on model size and performance? (2) Can the number of HRG rules be reduced in a principled way without

negatively affecting model performance? (3) Can the production rules be mined to identify existing and new

real world phenomena? and (4) What does it mean if two graphs have similar grammars?

Task 3.1: Model Size
As new rules are extracted from a graph they may or may not match an existing rule in the HRG. Rather

than keeping a list of rules, the HRG can be treated as a multiset of rules with a counter of the number of

times a particular rule has been seen. In this case, the growth of an HRG will almost certainly follow Heaps

law of diminishing returns. Despite this sublinear growth, large graphs may still result in large models.

The goal of this task is to reduce the size of the HRG without negatively effecting the performance of

downstream tasks like network inference. The subgraph sampling task (1.2) is a first step in reducing the

model’s size. Preliminary results, illustrated in Fig. 7 on the ArXiV GR-QC collaboration network, show

that larger subgraph samples do result in more accurate network generation. Fortunately, a close inspection
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of these results shows diminishing returns, i.e., an increase in model size does not correspond to an equal

increase in performance.
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Figure 7: Model performance (lower

is better) as a function of model size.

In addition to subgraph sampling, a second objective is to reduce

the number of HRG rules, i.e., the model size, by reformulating the net-

work generation task as a sparse coding task. In general terms, sparse

coding is a class of unsupervised learning algorithms that learn a hand-

ful of important basis vectors from some data using a loss function and

a regularizer.70 In terms of HRGs and graph representation, the loss

function will be defined as the difference between a generated graph

and the original graph, and a regularizer will be created so as to mini-

mize the number of basis vectors, i.e., production rules, in the model.

Unfortunately, the search space is probably not convex, so an op-

timally sparse set of production rules may not be easily obtainable. In

that case, the PI can still use any number of learning algorithms, espe-

cially inference engines used throughout natural language processing,

to find reasonable results.26, 88

Evaluation Plan Model size will be evaluated by counting the rules. The PI will also adapt the Akaike and

Bayesian information criterion (AIC/BIC) to measure the quality of the models. As in Objective 2, model

performance will be measured by comparing generated graphs against the original graphs using various

graph properties.

Task 3.2: Rule Inspection
HRG production rules represent the building blocks of a network in an interpretable way. Therefore, a

principled investigation of common rules or reoccurring rule-combinations is likely to result in interesting

new discoveries from various network datasets. For example, the triadic closure process is known by social

scientists to underlie community development, cooperative behavior, and trust to name a few.2, 10, 36, 79 Of

course, triadic closure is a known process, i.e., scientists already know what to look for. Uncovering new,

interesting, unknown processes is more difficult. Fortunately, the learning process in the previous task (3.1),

simplifies this objective by providing a sparse HRG model, where only the important rules are identified.

It is likely that two different graphs covering the same type of data, e.g., two different collaboration

networks or two different social networks, will have similar HRGs. But what if they do not? Understanding

the difference between two or more grammars may be an important indicator in understanding certain prop-

erties of each graph. Furthermore, if two graphs from different fields of science result in similar HRGs, then

their similarity may be indicative of some broader phenomena. The technology proposed in this proposal

will be employed to answer these questions and provide unprecedented opportunities to discover the hidden

building blocks of network data.

Evaluation Plan Rule inspection can be evaluated using any number of standard data mining metrics, but

the true test of these methods and models will be in the quantity and quality of natural phenomenon that are

captured and understood through collaboration with subject matter experts.

Risk Management The rule inspection task, and many of the collaborative efforts depend on learning the

important network patterns and corresponding HRG rules. This may be a difficult task. If needed, the

sparse coding task can be replaced with SVMs, graph-based Principle Component Analysis, or many other

statistical models. If need be, the rule probabilities assigned via the PCFG in Task 2.1 can be used to pick

the most important rules.
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4 Incisive Network Analysis through Collaborative Partnerships
The PI is a member of Notre Dame’s Interdisciplinary Center for Network Science and Applications

(iCeNSA), a collaboration of physical, social, and computer scientists with the overarching goal of facilitat-

ing and accelerating partnerships between biologists, chemists, physicists, sociologists, etc. with computer

scientists, especially in the area of network science and data mining. This CAREER proposal will accelerate

these partnerships for long term impact. Three such partnerships are described here.

Chemical Networks Transformations and interactions between molecules have innumerable impacts on

industry and human health. The bonds of molecules are themselves a graph, and the transformations between

molecules performed naturally and artificially are large and complex graphs. Prof. John Parkhill, Assistant

Professor of Analytical Chemistry (see letter) at UND develops faster and more accurate approaches to

calculate the energies of molecules, which enables the accurate prediction of connections between molecules

without an intractable number of real experiments. Theoretical features of these graphs will yield new

information about the way scientists explore chemical diversity, and the underlying design principles of

chemical networks, and may support developments in the discovery of therapeutic molecules. The Parkhill

group will generate a large library of molecular transformations and use HRGs to study these chemical

networks.

Knowledge Networks The explosion of digital information offers an unprecedented opportunity to study

the dynamics that shape human understanding, investigation, and certainty. By applying HRG extraction and

mining to information networks, the PI will be able to better understand how humans create and organize the

artifacts of knowledge. Prof. James Evans, Professor of Sociology at the University of Chicago (see letter),

will provide expertise in the dynamic social processes by which humans create and consume knowledge

networks. Prof. Evans’ MetaKnowledge Network, of which the PI is an active member, contains scientists

from dozens of universities across nearly all scientific fields and is currently constructing an extremely large

knowledge network from scientific literature.35, 38, 92, 98 This ongoing collaboration has yielded four peer-

reviewed publications on the Wikipedia knowledge network (and its derivatives, e.g., DBpedia) for fact

checking, human navigation,4 and link prediction.95–97 New work, supported by this CAREER proposal,

will extract network patterns from the full Web of Science dataset, recently curated by the Metaknowledge

group. This highly sought after dataset presents an unprecedented opportunity to explore the dynamics of

knowledge networks.

Natural Language Processing Because HRGs are based on formal language theory, natural language pro-

cessing (NLP) is an obvious application area. Recent developments in NLP have found that abstract meaning

representations (AMR) are able to represent the meaning of large and complex sentences by encoding the

meaning of a sentence as a graph.45, 87 Graphical representations of natural language enables the PI to

discover new and interesting patterns of meaning that frequently occur in natural language. Prof. David

Chiang, Associate Professor of Computer Science at UND (see letter), recently showed that AMRs could be

parsed from natural language.22 HRGs can be used to represent sentence-sized AMRs, but larger linguistic

structures representing complex thoughts or stories can also be represented as a single, large AMR-network.

In this form, Prof. Chiang will work closely with the PI to discover common linguistic patterns within a

story or work of literature. HRGs extracted from AMR-graphs could also be compared across disciplines or

cultures to provide a unique, principled understanding of human communication.

5 Education and Outreach Plan
The PI is committed to education and outreach objectives that increase and broaden computer science

instruction in primary and secondary schools. Despite appeals from the White House and Congress to

strengthen pre-college computer science education, the unfortunate reality is that many primary and high

school students do not have access to computer science or programming curricula. In cases where computer
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science AP courses are available only 21% of the enrollees are female, and only 8% are African-American

or Latino students.34 This needs to change. The future of our discipline relies heavily on the curiosity of

the next generation, and so it is critical that we instill in them a passion for learning and discovery. To help

address these challenges, the PI will:

1. Better prepare computer science students for complex, emerging problems by: a) integrating scientific

discoveries from across disciplines, and b) developing interdisciplinary research skills through new

curricula, supplements and educational programs listed in Section 5.1.

2. Develop future computer scientists by integrating computing projects into widely accessible K-12

science fair projects and through unique outreach activies as described in Section 5.2.

5.1 Integrating Research into Curriculum Development Activities
The PI will train undergraduate and graduate students from computing, engineering, and natural sci-

ences through the development of interdisciplinary courses. For example, the PI has previously developed

and taught a course since 2013 titled “Web Science and Information Retrieval.” Despite being primarily a

graduate-level course, to date 78% of all students have been undergraduate students, and about one-third of

students major in a field other than computer science. Student evaluations have rated this course in the top

25% of computer science courses for the past two years. The PI will integrate research into the classroom

by creating a new course on network science and graph mining; this course will not only serve to recruit

students into the PI’s research group, but also to train a new generation of interdisciplinary scientists in

network science and data mining using a common terminology and a unifying point of view.

Finding meaningful links between domains has been shown to be a strong driver of discovery.16, 42, 53

In existing computer science curricula, graph theory and network science is typically reserved as a senior

elective or purely graduate level course, while theory of computation is often a sophomore or junior level

course. To bridge this gap and to promote this research, the PI will create and post online a text and

video supplement to the standard undergraduate literature on context free grammars. Interestingly, Sipser’s

seminal textbook on “Theory of Computation” introduces formal languages and grammars immediately

after its introduction of graphs.99 So, in order to reach the widest possible audience the PI’s supplement on

graph grammars will match Sipser’s notation and be written to an undergraduate audience.

Student-Centered Pedagogical Strategies. The PI also teaches the core undergraduate course on “Database

Concepts.” In both courses the PI will continue to implement an active learning classroom style, which

punctuates 15-minute chalk-and-talk lectures with two minute group exercises. Two minute group exer-

cises, especially, change the pedagogical structure by allowing students who understand the exercise to

effectively instruct their neighbor in a one-on-one setting, which increases the understanding of all students.

The 15-minute mini-lectures will also be designed with an eye towards a future online adaptation. Term

projects will be designed to motivate students and encourage practical creativity; to date, at least six (of

about 40 total) course projects have matured into downloadable apps or have otherwise been integrated into

long-term solutions, e.g., Notre Dame’s Nutritional Accounting System, St. Ed’s Diner Ordering System.

Interdisciplinary Research and Educational Programs. The PI is closely involved in several ongoing

education, training, and outreach initiatives that deepen and broaden scientific impact. The PI regularly

advises and often publishes with undergraduate students from NSF REU projects, Notre Dame’s Interna-

tional Summer Undergraduate Research Experience (iSURE) program, and has mentored several internal

undergraduate projects. The PI is also part of a large NSF Research Experience for Teachers (RET) program

(NSF-1609394) that aims to engage high school teachers in state-of-the-art data mining and machine learn-

ing research. The PI has organized tutorials and workshops at world-class venues such as WWW, KDD,

WSDM; is a speaker and panelist at SIGKDD’s broadening participation in data mining (BPDM) initiative;

and has presented many invited talks including a TEDx talk that was selected as the TED “talk of the month.”
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Forming a Strong Research Program One of the PI’s long term goals is to mentor graduate students to

be independent and ethical scholars with strong communication skills. The PI’s lab is currently composed

of four students from Hispanic, American, and Asian backgrounds; three male and one female. A fifth co-

advised student, whom predates the PI’s arrival at Notre Dame, has graduated and will begin a tenure-track

professorship at Cal Poly this Fall. These graduate students have won several prestigious awards and fellow-

ships including the IBM PhD Fellowship, the USAID Fellowship, and the NSF EAPSI Fellowship as well

as numerous university-level awards. In addition, the PI has mentored eight undergraduate research projects

resulting in four publications in international venues4, 117–119 and numerous local posters and presentations.

5.2 Science Fair Projects in Computing
For most Americans, a science fair is the first (and perhaps most memorable) exposure to the scientific

process, and recent initiatives from Google and the White House to promote science fair participation has

had a measurable impact on science fair participation. However, projects in computing are largely absent

from school science fairs. With this in mind, the PI has been actively involved in the Northern Indiana

Regional Science and Engineering Fair (NIRSEF) for the past three years. Although national statistics

are not available, NIRSEF had 293 participants in 2016 but only four computer science projects! This

discrepancy is caused by a confluence of factors including the documented lack of K-12 CS curriculum and

educators; but the PI has also found a dearth of science fair resources available to aspiring scientists.

Development and Dissemination of CS Science Fair projects. Many science fair projects are adaptations

of online resources: including hundreds of chemistry, biology, physics, mechanical, and electronics project

ideas. Yet there are few, if any, computing projects listed online. To remedy this discrepancy, the PI, in

collaboration with NIRSEF (see letter) and several local K-12 science teachers, will develop and disseminate

interesting and innovative computing science fair projects.

These projects will be grouped into 7-9 and 10-12 grade levels, where the highest group will be sub-

divided into junior and senior-level projects. It is not reasonable to expect many K-12 students to have

standard laptops or PCs, especially in South Bend, IN, a city where 65.1% of public school students qualify

for free or reduced lunches. Because mobile devices are increasingly being used as the primary or sole

computer, many of the science fair projects will be designed to be conducted on the students’ mobile phone

or tablet. Projects like: ‘how the number of open apps affects battery life,’ or ‘mapping wireless and wifi

signal in the school,’ among many others, will inspire deeper questions in battery technology and wireless

networks just as model volcanoes inspire deeper questions in chemistry and geology.

Community Outreach to Middle and High schools. This proposal will also initiate a novel collaboration

with Mr. George Logdson, a math and science teacher at Riley High School in South Bend (see letter). The

PI will extend Mr. Logdson’s involvement in the aforementioned RET program to advertise and mentor

computing science fair projects, and to collect feedback from students in order to create new projects and

revise existing projects. The PI will also work with Notre Dame’s Kaneb Center for Teaching and Learning

(see letter) to develop evaluation measures that properly gauge student learning outcomes. An undergraduate

student is budgeted to help with the science fair and evaluation tasks. Projects that are successful on a local

level will be hosted on NIRSEF’s resources Web page for world-wide dissemination. Although letters are

not included, the PI has similar agreements with four other local math and science teachers through NIRSEF

and the RET program.

6 Broader Impacts of Proposed Research and Educational Activities
The impact of the education and outreach initiatives will increase the number and diversity of graph

mining, data mining and data science researchers. In addition, this project will result in the formation of new

interdisciplinary scientists, career mentoring, undergraduate and graduate research, and the development of

computer science projects for K-12 students, focusing on economically disadvantaged youth.
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Year 1 Year 2 Year 3 Year 4 Year 5

Obj. 1: Structure Extraction
1.1 HRG Stability

1.2 Sampling

Obj. 2: Graph Generators
2.1 Applying Production Rules

2.2 Evolving Graphs

2.1 Applying Production Rules

Obj. 3: Pattern Analysis
3.1 Model Size

3.2 Rule Inspection

Education and Outreach: Science Fair Projects in Computing
Create Revise NIRSEF

Work Plan: Illustration

of the timeline of the pro-

posed tasks. The success

of each individual task will

impact, but not preclude

the success of downstream

tasks. Educational tasks

alternate between project

development, presentation

at NIRSEF, and subse-

quent revision. The out-

reach tasks are inherently

cyclic and are centered

around the annual science

fair, which takes place in

early March.

The research goal of this CAREER proposal is to develop and evaluate innovative techniques that learn

the building blocks of real world networks and the instructions by which the pieces fit together. This com-

ponent has the potential to dramatically enable groundbreaking advances in graph mining and networks

science and directly benefit society through an improved understanding of the fundamental building blocks

of real world networks. This CAREER proposal will be the first to leverage the relationship between graph

theory and formal language theory. Stemming from this CAREER proposal, many of the principled lessons,

theorems, and algorithms that have been developed in formal language theory will be applied to graph the-

ory. The three objectives will not only answer important questions, but also lay the foundation for extensive

followup work and facilitate broad scientific impact.

Open Source Science The PI has a history of releasing research artifacts including source code and data. All

research papers will be published to ArXiV upon acceptance. Because of the broad appeal of the objectives

in this CAREER proposal, the developed models and techniques will be integrated into an open source

tool and released under the liberal CC-BY license. The software will be configured for easy adaptation

by network scientists, and easy use by domain scientists via a user-friendly and platform independent user

interface as a result of the collaborative efforts. The software will also be used as an educational tool through

an online Web application. Because of this commitment to open source science, the PI’s previous work has

been implemented or adapted by others at IBM, Google, Facebook, Reddit, and in several large academic

demonstrations.40, 46, 97, 104, 112, 117

7 Summary
To recap, the PI’s long term goal is to study new techniques for the discovery of structure in real world

networks while developing educational and outreach initiatives that broaden, motivate, and inspire future

computer scientists. The research objectives in this CAREER proposal leverage the PI’s unique background

and recent work to fundamentally change the way we view structure discovery in networks, and computer

and natural scientists alike will have powerful new tools by which to understand the organization and evo-

lution of real world networks.

Results from Prior NSF Support
The PI has not received prior NSF support.
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national Colloquium on Grammatical Inference, pages 106–118. Springer, 1994.

103 Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on billion node graphs.

Proceedings of the VLDB Endowment, 5(9):788–799, 2012.

104 F. Tao, X. Yu, K. H. Lei, G. Brova, X. Cheng, J. Han, R. Kanade, Y. Sun, C. Wang, L. Wang, and

T. Weninger. Research-insight: Providing insight on research by publication network analysis. In SIG-
MOD, pages 1093–1096. ACM, 2013.

105 R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity

of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on computing, 13(3):566–579,

1984.

106 M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. Smola, L. Song, P. S. Yu, X. Yan, and K. M.

Borgwardt. Discriminative frequent subgraph mining with optimality guarantees. Statistical Analysis
and Data Mining, 3(5):302–318, 2010.

107 J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping the empirical and extremal

geography of large graph collections. In WWW, pages 1307–1318. ACM, 2013.

108 D. J. Watts. Networks, dynamics, and the small-world phenomenon. American Journal of sociology,

105(2):493–527, 1999.

109 D. J. Watts and S. H. Strogatz. Collective dynamics of small-worldnetworks. nature, 393(6684):440–442,

1998.

110 T. Weninger. An exploration of submissions and discussions in social news: mining collective intelli-

gence of reddit. Social Network Analysis and Mining, 4(1):1–19, 2014.

111 T. Weninger, Y. Bisk, and J. Han. Document-topic hierarchies from document graphs. In CIKM, pages

635–644. ACM, 2012.
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112 T. Weninger, M. Danilevsky, F. Fumarola, J. Hailpern, J. Han, T. J. Johnston, S. Kallumadi, H. Kim,

Z. Li, D. McCloskey, Y. Sun, N. E. TeGrotenhuis, C. Wang, and X. Yu. Winacs: Construction and

analysis of web-based computer science information networks. In SIGMOD, pages 1255–1258. ACM,

2011.

113 T. Weninger, F. Fumarola, J. Han, and D. Malerba. Mapping web pages to database records via link

paths. In CIKM, pages 1637–1640. ACM, 2010.

114 T. Weninger, F. Fumarola, C. X. Lin, R. Barber, J. Han, and D. Malerba. Growing parallel paths for

entity-page discovery. In WWW, pages 145–146. ACM, 2011.

115 T. Weninger, W. H. Hsu, and J. Han. Cetr: content extraction via tag ratios. In WWW, pages 971–980.

ACM, 2010.

116 T. Weninger, T. J. Johnston, and M. Glenski. Random voting effects in social-digital spaces: A case

study of reddit post submissions. In Hypertext and Social Media, pages 293–297. ACM, 2015.

117 T. Weninger, T. J. Johnston, and J. Han. The parallel path framework for entity discovery on the web.

ACM Transactions on the Web, 7(3):16, 2013.

118 T. Weninger, R. Palacios, V. Crescenzi, T. Gottron, and P. Merialdo. Web content extraction: a metaanal-

ysis of its past and thoughts on its future. ACM SIGKDD Explorations, 17(2):17–23, 2016.

119 T. Weninger, X. A. Zhu, and J. Han. An exploration of discussion threads in social news sites: A case

study of the reddit community. In ASONAM, pages 579–583. IEEE, 2013.

120 X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM, pages 721–724. IEEE,

2002.

121 R. Yang, P. Kalnis, and A. K. Tung. Similarity evaluation on tree-structured data. In SIGMOD, pages

754–765. ACM, 2005.

122 M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM Journal on Algebraic Discrete
Methods, 2(1):77–79, 1981.

123 Ö. N. Yaveroğlu, T. Milenković, and N. Pržulj. Proper evaluation of alignment-free network comparison

methods. Bioinformatics, 31(16):2697–2704, 2015.

124 Z. Yin, M. Gupta, T. Weninger, and J. Han. Linkrec: a unified framework for link recommendation with

user attributes and graph structure. In WWW, pages 1211–1212. ACM, 2010.

125 Z. Yin, M. Gupta, T. Weninger, and J. Han. A unified framework for link recommendation using random

walks. In ASONAM, pages 152–159. IEEE, 2010.

126 G. U. Yule. A mathematical theory of evolution, based on the conclusions of dr. jc willis, frs. Philosoph-
ical transactions of the Royal Society of London. Series B, containing papers of a biological character,

213:21–87, 1925.
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Tim Weninger

Department of Computer Science and Engineering Phone: 574-631-6770 
353 Fitzpatrick Hall  tweninger@nd.edu 
University of Notre Dame http://cse.nd.edu/~tweninge 
Notre Dame, IN 46556. 

(a) Professional Preparation

Kansas State University Manhattan, KS Information Systems  B.S., May 2007 
Kansas State University Manhattan, KS Computer Science M.S., Dec 2008 
University of Illinois Urbana, IL Computer Science Ph.D., Aug 2013 

(b) Professional Appointments

September 2013 – present Assistant Professor
Department of Computer Science and Engineering, University of Notre Dame
September 2013 – present Affiliated Professor
Interdisciplinary Center for Network Science and Applications, University of Notre Dame

(c) Products  

5 Most closely related

1. Salvador Aguinaga, Rodrigo Palacios, David Chiang and Tim Weninger. Growing Graphs with
Hyperedge Replacement Graph Grammars. Proc. of Int. Conf. on Info. and Knowledge 
Management (CIKM’16), Indianapolis, IN 2016. 

2. Maria Glenski and Tim Weninger. Rating Effects on Social News Posts and Comments. ACM
Trans. Intelligent Systems and Tech. (TIST), 2017. 

3. Baoxu Shi and Tim Weninger. Fact Checking in Heterogeneous Information Networks. Proc. of
2013 Int. Conf. on the World Wide Web (WWW’16), Montreal, Canada. April 2016.

4. Baoxu Shi and Tim Weninger. Scalable Models for Computing Hierarchies in Information
Networks. Knowledge and Information Systems (KAIS). pp. 1-31, 2016. 

5. Salvador Aguinaga, Aditya Nambiar, Zuozhu Liu, Tim Weninger “Concept Hierarchies and Human
Navigation”. IEEE Conference on BigData (BigData’15) Santa Clara, CA. October 29, 2015. 

5 Other significant 

1. Baoxu Shi and Tim Weninger Discriminative Predicate Path Mining for Fact Checking in
Knowledge Graphs. Knowledge Based Systems, 104(15), 123-133, 2016. 

2. Maria Glenski, Thomas J. Johnston and Tim Weninger “Random Voting Effects in Social-Digital
Spaces: A case study of Reddit Post Submissions.” ACM Conference on Hypertext and Social 
Media (HT’15), METU, Cyprus, September 1-4, 2015. 

3. Baoxu Shi and Tim Weninger. Mining Interesting Meta-Paths from Complex Heterogeneous
Information Networks. International Conference on Data Mining (ICDM’15) Designing Market 
of Data, Shenzhen, China, December 14-17, 2014. 

4. Tim Weninger, Yonatan Bisk, Jiawei Han. “Document-Topic Hierarchies from Document Graphs.”
Proc. of Int. Conf. on Info. and Knowledge Management (CIKM’12), Maui, Hawaii, Oct. 2012. 

5. Tim Weninger, Thomas J. Johnston, Jiawei Han. “The Parallel Path Framework for Entity
Discovery on the Web.” ACM Transactions on the Web (TWeb), 7(3). ACM, 2013. 



(d) Synergistic Activities

Workshop Chair of the 2016 Social Informatics Conference

Conference Tutorials at WSDM and WWW

Open Source Software Projects: Dozens of research projects are available at online at
https://github.com/nddsg or https://github.com/tweninger

Developed curricula and course materials for Web Science and Information Retrieval,
CSE4/60497 at the University of Notre Dame. Developed course software called the Simple
Information Retrieval System (SIRS), which is a complete search engine that focuses on
explanation/teaching/readability, available at https://github.com/nddsg/SIRS.

Journal Reviewer: Transactions on the Web (TWeb), Data Mining and Knowledge Discovery
(DAMI), Transactions on Knowledge Discovery and Data Mining (TKDD), Transactions on
Intelligent Systems and Technology (TIST), Transactions on Knowledge and Data Engineering
(TKDE), Transaction on Information Systems (TOIS), Knowledge and Information Systems
(KAIS), Digital Multimedia Broadcasting (IJDMB), Neurocomputing, Information Processing
and Management (IPM).  Conference Program Committee: KDD, ICDM, IJCAI, SDM,
SIGMOD, AAAI, ICML, VLDB, ICDE, WWW, WSDM, CIKM, ASONAM, ADMA, NIPS,
IC2S2, NIPS (multiple years).



SUMMARY
PROPOSAL BUDGET
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proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL SCHOLARS

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. (        ) GRADUATE STUDENTS

4. (        ) UNDERGRADUATE STUDENTS

5. (        ) SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. (        ) OTHER

   TOTAL SALARIES AND WAGES (A + B)

C.  FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

   TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D.  EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

   TOTAL EQUIPMENT

E.  TRAVEL 1.  DOMESTIC (INCL. U.S. POSSESSIONS)

2.  FOREIGN

F.  PARTICIPANT SUPPORT COSTS

1. STIPENDS         $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

   TOTAL NUMBER OF PARTICIPANTS       (          )                         TOTAL PARTICIPANT COSTS

G.  OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

   TOTAL OTHER DIRECT COSTS

H.  TOTAL DIRECT COSTS (A THROUGH G)

I.  INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J.  TOTAL DIRECT AND INDIRECT COSTS (H + I)

K.  SMALL BUSINESS FEE                          

L.  AMOUNT OF THIS REQUEST (J) OR (J MINUS K)

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

1YEAR

1

University of Notre Dame

Tim

TimTim

 Weninger

 Weninger Weninger

TimTimTim Weninger Weninger Weninger - PI  0.00  0.00  1.00 11,198

   0   0.00   0.00   0.00        0
1  0.00  0.00  1.00      11,198

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
2 42,229
1 1,500
0 0
0 0

     54,927
6,874

     61,801

         0
5,000
2,500

0
0
0
0

0          0

900
0
0
0
0
0

       900
     70,201

38,260
Modified Total Direct Cost; on campus rate (Rate: 54.5000, Base: 70201)

    108,461
0

    108,461
0



SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL SCHOLARS

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. (        ) GRADUATE STUDENTS

4. (        ) UNDERGRADUATE STUDENTS

5. (        ) SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. (        ) OTHER

   TOTAL SALARIES AND WAGES (A + B)

C.  FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

   TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D.  EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

   TOTAL EQUIPMENT

E.  TRAVEL 1.  DOMESTIC (INCL. U.S. POSSESSIONS)

2.  FOREIGN

F.  PARTICIPANT SUPPORT COSTS

1. STIPENDS         $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

   TOTAL NUMBER OF PARTICIPANTS       (          )                         TOTAL PARTICIPANT COSTS

G.  OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

   TOTAL OTHER DIRECT COSTS

H.  TOTAL DIRECT COSTS (A THROUGH G)

I.  INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J.  TOTAL DIRECT AND INDIRECT COSTS (H + I)

K.  SMALL BUSINESS FEE                          

L.  AMOUNT OF THIS REQUEST (J) OR (J MINUS K)

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

2YEAR

2

University of Notre Dame

Tim

TimTim

 Weninger

 Weninger Weninger

TimTimTim Weninger Weninger Weninger - PI  0.00  0.00  1.50 17,302

   0   0.00   0.00   0.00        0
1  0.00  0.00  1.50      17,302

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
2 43,496
1 1,500
0 0
0 0

     62,298
8,855

     71,153

         0
5,000
2,500

0
0
0
0

0          0

0
0
0
0
0
0

         0
     78,653

42,866
Modified Total Direct Cost; on campus rate (Rate: 54.5000, Base: 78653)

    121,519
0

    121,519
0



SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL SCHOLARS

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. (        ) GRADUATE STUDENTS

4. (        ) UNDERGRADUATE STUDENTS

5. (        ) SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. (        ) OTHER

   TOTAL SALARIES AND WAGES (A + B)

C.  FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

   TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D.  EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

   TOTAL EQUIPMENT

E.  TRAVEL 1.  DOMESTIC (INCL. U.S. POSSESSIONS)

2.  FOREIGN

F.  PARTICIPANT SUPPORT COSTS

1. STIPENDS         $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

   TOTAL NUMBER OF PARTICIPANTS       (          )                         TOTAL PARTICIPANT COSTS

G.  OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

   TOTAL OTHER DIRECT COSTS

H.  TOTAL DIRECT COSTS (A THROUGH G)

I.  INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J.  TOTAL DIRECT AND INDIRECT COSTS (H + I)

K.  SMALL BUSINESS FEE                          

L.  AMOUNT OF THIS REQUEST (J) OR (J MINUS K)

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

3YEAR

3

University of Notre Dame

Tim

TimTim

 Weninger

 Weninger Weninger

TimTimTim Weninger Weninger Weninger - PI  0.00  0.00  1.50 17,821

   0   0.00   0.00   0.00        0
1  0.00  0.00  1.50      17,821

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
2 44,801
1 1,500
0 0
0 0

     64,122
9,397

     73,519

         0
5,000
2,500

0
0
0
0

0          0

0
0
0
0
0
0

         0
     81,019

44,155
Modified Total Direct Cost; on campus rate (Rate: 54.5000, Base: 81019)

    125,174
0

    125,174
0



SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL SCHOLARS

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. (        ) GRADUATE STUDENTS

4. (        ) UNDERGRADUATE STUDENTS

5. (        ) SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. (        ) OTHER

   TOTAL SALARIES AND WAGES (A + B)

C.  FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

   TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D.  EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

   TOTAL EQUIPMENT

E.  TRAVEL 1.  DOMESTIC (INCL. U.S. POSSESSIONS)

2.  FOREIGN

F.  PARTICIPANT SUPPORT COSTS

1. STIPENDS         $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

   TOTAL NUMBER OF PARTICIPANTS       (          )                         TOTAL PARTICIPANT COSTS

G.  OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

   TOTAL OTHER DIRECT COSTS

H.  TOTAL DIRECT COSTS (A THROUGH G)

I.  INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J.  TOTAL DIRECT AND INDIRECT COSTS (H + I)

K.  SMALL BUSINESS FEE                          

L.  AMOUNT OF THIS REQUEST (J) OR (J MINUS K)

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

4YEAR

4

University of Notre Dame

Tim

TimTim

 Weninger

 Weninger Weninger

TimTimTim Weninger Weninger Weninger - PI  0.00  0.00  1.00 12,237

   0   0.00   0.00   0.00        0
1  0.00  0.00  1.00      12,237

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
2 46,145
1 1,500
0 0
0 0

     59,882
8,312

     68,194

         0
5,000
2,500

0
0
0
0

0          0

0
0
0
0
0
0

         0
     75,694

41,253
Modified Total Direct Cost; on campus rate (Rate: 54.5000, Base: 75694)

    116,947
0

    116,947
0



SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.

A.  SENIOR PERSONNEL: PI/PD, Co-PI’s, Faculty  and Other Senior Associates
          (List each separately with title, A.7.  show number in brackets) CAL ACAD SUMR

1.

2.

3.

4.

5.

6. (        ) OTHERS (LIST INDIVIDUALLY ON BUDGET JUSTIFICATION PAGE)

7. (        ) TOTAL SENIOR PERSONNEL (1 - 6)

B.  OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)

1. (        ) POST DOCTORAL SCHOLARS

2. (        ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.)

3. (        ) GRADUATE STUDENTS

4. (        ) UNDERGRADUATE STUDENTS

5. (        ) SECRETARIAL - CLERICAL (IF CHARGED DIRECTLY)

6. (        ) OTHER

   TOTAL SALARIES AND WAGES (A + B)

C.  FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

   TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A + B + C)

D.  EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $5,000.)

   TOTAL EQUIPMENT

E.  TRAVEL 1.  DOMESTIC (INCL. U.S. POSSESSIONS)

2.  FOREIGN

F.  PARTICIPANT SUPPORT COSTS

1. STIPENDS         $

2. TRAVEL

3. SUBSISTENCE

4. OTHER

   TOTAL NUMBER OF PARTICIPANTS       (          )                         TOTAL PARTICIPANT COSTS

G.  OTHER DIRECT COSTS

1. MATERIALS AND SUPPLIES

2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION

3. CONSULTANT SERVICES

4. COMPUTER SERVICES

5. SUBAWARDS

6. OTHER

   TOTAL OTHER DIRECT COSTS

H.  TOTAL DIRECT COSTS (A THROUGH G)

I.  INDIRECT COSTS (F&A)(SPECIFY RATE AND BASE)

TOTAL INDIRECT COSTS (F&A)

J.  TOTAL DIRECT AND INDIRECT COSTS (H + I)

K.  SMALL BUSINESS FEE                          

L.  AMOUNT OF THIS REQUEST (J) OR (J MINUS K)

M. COST SHARING PROPOSED LEVEL $ AGREED LEVEL IF DIFFERENT $

PI/PD NAME FOR NSF USE ONLY
INDIRECT COST RATE VERIFICATION

ORG. REP. NAME*

 *ELECTRONIC SIGNATURES REQUIRED FOR REVISED BUDGET 

5YEAR

5

University of Notre Dame

Tim

TimTim

 Weninger

 Weninger Weninger

TimTimTim Weninger Weninger Weninger - PI  0.00  0.00  1.00 12,604

   0   0.00   0.00   0.00        0
1  0.00  0.00  1.00      12,604

0 0.00 0.00 0.00 0
0 0.00 0.00 0.00 0
2 47,530
1 1,500
0 0
0 0

     61,634
8,836

     70,470

         0
5,000
2,500

0
0
0
0

0          0

0
0
0
0
0
0

         0
     77,970

42,494
Modified Total Direct Cost; on campus rate (Rate: 54.5000, Base: 77970)

    120,464
0

    120,464
0



SUMMARY
PROPOSAL BUDGET

Funds
Requested By

proposer

Funds
granted by NSF

(if different)

Date Checked Date Of Rate Sheet Initials - ORG

NSF Funded
Person-months

fm1030rs-07

FOR NSF USE ONLY
ORGANIZATION PROPOSAL NO. DURATION (months)

Proposed Granted

PRINCIPAL INVESTIGATOR / PROJECT DIRECTOR AWARD NO.
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Budget Justification

Salaries and Wages
Salaries and wages (including stipends) are based on the University of Notre Dame’s budget forecast for

fiscal year 2016-2017 with 3 percent (3%) annual increment compensation.

Senior Personnel: Six months summer salary is requested for PI Weninger; summer salary is allocated

according to existing grants and expectation for future funding.

Other Personnel: Support ($27,333 first year stipend) for two Computer Science Graduate Students (9

months/year) is requested for all five years. Personnel budget lines include a three per cent salary escalation

to accommodate a portion of anticipated merit raises during the project period.

Support ($1,500 per year) for a Computer Science undergraduate student is requested for all five years

for the education and outreach program. Although not included in this budget, the PI will apply to the REU

program to further supplement the education and outreach objectives of this proposal.

Personnel responsibilities
Senior Personnel: The PI (Weninger) will direct the two graduate students and will apply for REU funding

for undergraduate students.

Non-Senior Personnel: Two graduate students from computer science will provide the design, algorithm

development, and software engineering effort to implement the proposed work.

Fringe Benefits [FY17]
Employee benefits are directly charged as a percentage of salaries and wages. The regular faculty rate is

26.1% with a inflation factor of 1.01%, the graduate student rate is 9.3% with a inflation factor of 1.05%, the

undergraduate student rate is 1.6% with no inflation factor. Fringe rate percentages are negotiated annually.

These rates are applied throughout the life of the project.

Travel (domestic and foreign)
Funds are requested to cover travel costs necessary for the PI and his graduate students to meet with

project collaborators, to attend workshops organized by the team as part of the educational outreach plan,

and to participate in conferences and present the results of this research. These conferences include: ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), World Wide Web

Conference (WWW), IEEE Conference on Data Mining (ICDM), ACM Conference on Information and

Knowledge Management (CIKM), etc. The requested funds will support the PI and his graduate students

to attend four domestic conferences per year and one international conference each year. For domestic

travel, the estimated average cost per trip is $1,250 for four travel days, which includes airfare, ground

transportation, lodging, meals, and conference registration. For foreign travel, the estimated cost is $2,500

per six travel days.

Computer Services
$0 is requested for computer services. The PI has four large servers purchased with startup funds: each

server has 256GB of RAM memory, 6 TB of available disk, and 64 processing cores. Further detailed can

be found in the Facilities, Equipment and Other Resources document.

Materials and Supplies
A modest amount ($900) is requested for Materials and Supplies to cover the cost of expendable, project

related materials such as photocopying and the printing of large posters.
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Indirect Costs
Notre Dame’s federally-negotiated indirect cost rate is applied to modified total direct costs (all direct

costs except participant support, equipment, and the first $25,000 of each sub-award). (U.S. Department of

Health and Human Services is Notre Dame’s cognizant federal agency; the F&A rate agreement is dated

October 14, 2015, and is applicable for five years.) For this project, the F&A rate of 54.5% for research

conducted on campus is used throughout the life of the project.
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Current

A15-0168
Title: Socio-Digital Influence Attack Models and Deterrance ( FA9550-15-1-0003.2 )
PI: Weninger, Timothy
Source: Department of the Air Force
Total Award Amount: $349,379
Grant Period: 12/01/2014 - 11/30/2017
Location of Project: University of Notre Dame
Person Months 2.0

Pending

15-0694
Title: CAREER: Principled Structure Discover for Network Analysis (this proposal)

Source: NSF

Amount: $592,565

Grant Period: 05/01/2017 - 04/30/2022

Location of Project: University of Notre Dame

Person Months 1.0

16-0913
Title: Mining Conversation Trails for Effective Group Behavior

Source: Department of Army

Amount: $359,988

Grant Period: 01/01/2017 - 12/31/2019

Location of Project: University of Notre Dame

Person Months 0.5

Current and Pending Support
Weninger, Timothy

University of Notre Dame



Facilities, Equipment and Other Resources

The PI has access to the following facilities, equipment, and other resources, which will be adequate

to pursue the proposed research goals. Wherever appropriate, this document will describe how the existing

resources will be used for the proposed research project. Specifically, the PI involvement in other ongoing

large-scale studies, university centers and data collection efforts has equipped him with the laboratory space,

tools, and equipment necessary for this project.

Resources of Weninger’s Lab
Researchers on this project reside in the the large and modern Interdisciplinary Center for Network

Science and Applications (iCeNSA) Lab, which is a short walk from the PI’s office. The PI is also located

within a short walk through the campus of Notre Dame from the Center of Research Computing, which

will house and maintain the collected data sets. The laboratory space will be used for the data collection

programming and analysis of the collected data.

Personal Computers The University of Notre Dame provides graduate students with computers and mon-

itors at their request upon their arrival. The university also provides a new personal laptop or desktop

computer to faculty once every three years. Ancillary devices such as printers, keyboards, etc. are provided

by the CSE department at no charge.

Computing Servers The Notre Dame Data Science Group (ND-DSG), under the direction of the PI, cur-

rently owns adequate computing equipment required for this project. This includes four Dell PowerEdge

(R815) servers with 256GB of RAM memory, 6 TB of available disk, and 64 processing cores each.

Because of this existing infrastructure the PI does not require equipment funding.

Software The ND-DSG has access to all of the software required for this project, including Matlab, Python,

Java programming environments as well as Hadoop, HDFS, and Spark systems configured on the computing

servers.

College-wide Computing Resources
All researchers in the College of Engineering at the University of Notre Dame have easy access to

the Engineering College’s Workstation Cluster, consisting of more than 100 state-of-the-art workstations.

The workstations and computers are all connected to the Internet network, allowing access to a nationwide

repository of data and programs. Student developers participating in this project will have anytime access

to these resources.

Center for Research Computing (CRC)
The CRC houses two complementary resources: the High Performance Computing section, providing

over 8000 cores of computational power with the associated support infrastructure for both hardware and

installed software, and the Cyberinfrastructure section, empowering faculty and industry partners to develop

research environments that support advanced data and information processing services including acquisition,

storage, management, integration, mining and visualization of data.

These services include: the utilization of up to 10TB of redundant distributed (network) storage, nightly

off-site backup, SVN source code repositories, and basic web services to share data sets residing in said stor-

age. Security of the data is ensured through centralized institutional authentication controls and encrypted

data storage.

All system administration is carried out by CRC with access provided only to students who are members

of the PI’s research group. All subject logins and data inputs (via the web or mobile) are strictly protected

by digital certificates (public/private keys) ensuring appropriate confidentiality for all communications to
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the server. Database and storage array access are strictly separated from the general Internet by virtue of

tightly regulated firewall rules.

For more information about CRC policies and services please see: http://crc.nd.edu/index.

php/aboutcrc/policies.
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Data Management Plan

Data & Software
The types of data that will be consumed and produced in this research include a wide range of graph

datasets, examples of which are given in the Project Description. The datasets will primarily be obtained

through the Internet from publicly available sources such as private institutions, government agencies and

academic institutions and stored locally at facilities operated by the University of Notre Dame Center for

Research Computing (CRC). There is a need for significant storage space requirements in this project. For

example, a single Wikipedia snapshot database is approximately 50GB. Many such datasets, and potentially

daily versions thereof, as well as an array of similar types of data from other sources will be used throughout

this project. In total, approximately 10TB of storage will be needed over the course of the project, which

will be physically stored on existing servers, hosted by Notre Dame’s CRC, and managed by the PI.

Several software packages will also be developed to process, and analyze these datasets. The majority of

the processing will be performed using basic shell, Perl, Python or similar scripting languages. The analysis

will rely on mathematical and statistical software packages such as Matlab and R, as well as custom codes

written in C/C++, Python, Java, etc. Visualizations will be produced using Matlab’s plotting capabilities.

Many of these software packages are freely available; and Notre Dame provides access to all of these and

required commercial software via a campus license.

Data Standards
Datasets will come in heterogeneous formats ranging from ASCII (e.g., plain-text, comma-separated

values) to complex XML data and formats specifically designed for graph data (e.g., nodeXL, dot, rdf).

All of these are open formats and built-in routines and/or external libraries exist in many popular software

packages to access them; no proprietary software will be required. One convenient feature of the widely

used data formats is the ability to include metadata, which is extensively used in the scientific computing

and especially network science communities. In addition, the binary formats are highly compressed relative

to their plain-text representation, so such data formats will be used for long-term storage.

Access and Sharing
The PI is committed to open science, data sharing and open source software licences.

Data The PI will establish a public repository of network datasets. The access policy will be that at the time

of publication, datasets used or produced will be made available under the CC-BY license free of charge.

Files which may exceed the capacity of the Web server will be provided to interested parties upon request.

The PI is committed to providing convenient data access to a broad user base. Internally, data may be kept

on hard drives for short-term storage and analysis.

Source Code Source code will be made publicly available on GitHub under the CC-BY license, and the

PI will accept changes and updates offered by the community, i.e., pull requests. Software codes and in-

termediate datasets at Notre Dame will be protected from unauthorized access by firewall and password

authentication.

Publications Except under special circumstances, the PI will submit to publication venues that allow open

access or submission to ArXiV. Therefore, scholarly publications will be posted to ArXiV upon acceptance

under the CC-BY license.

Re-Use, Re-Distribution, and Derivatives
Data will be provided ”as is” via general access including metadata information in README text files

or via the metadata capabilities of scientific file formats. Under the terms of the CC-BY license, use of



the data in other publications or products will be permitted if the source is acknowledged. Data and data

products will not be copyrighted.

Archiving
The analysis will be performed at Notre Dame, where data is stored on hard drives in RAID configuration

and automatically archived to tertiary storage to ensure preservation. Final data sets will be archived at Notre

Dame, which has an automatic procedure for permanent archival of massive data sets. The PI’s goal is to

permanently maintain the public source code and data repository pending availability of funds beyond the

duration of this project.
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Department of Computer Science and Engineering

384 Fitzpatrick Hall tel (574) 631-9978
Notre Dame, Indiana                                                      Kevin W. Bowyer fax (574) 631-9260
46556  USA                                     Schubmehl-Prein Professor and Department Chair

June 22, 2016

To the National Science Foundation Review Panel,

I am writing to express my enthusiastic support for Professor Tim Weninger’s proposal entitled 
“CAREER: Principled Structure Discovery for Network Analysis” to the National Science 
Foundation. Professor Weninger is a prominent researcher, one of our star young faculty 
members in Computer Science & Engineering, who plays an important role in our plans to 
expand our research and teaching activities in Data Science and as part of the Notre Dame’s 
Interdisciplinary Center for Network Science and Applications.

Having hired Prof. Weninger after a national search, Notre Dame is investing in Tim’s career 
development. In particular we have:

1) Provided a startup package, which includes support for two full time graduate students 
over three full years as well as some summer salary.

2) Provided office space and lab space for Prof. Weninger’s graduate students.

3) Purchased computing equipment that is currently housed at Notre Dame’s state-of-the-art 
Center for Research Computing facility.

4) Covered travel expenses for Prof. Weninger to attend, and in some cases, deliver invited 
talks at the US National Academies, NSF, ASEE’s National Excellence in Teaching 
Institute, and the Computing Research Association.

5) Assigned Professor Nitesh Chawla, as a mentor to Tim. Professor Chawla, a PI of several 
NSF, ARO, AFOSR, and ONR awards, will provide guidance to Professor Weninger on 
research, education, and outreach activities.

In addition the above commitments, the university, college and department have many 
fellowships and graduate assistantships available to graduate students, thereby supplementing 
their support. Furthermore, neither the university nor the graduate school charge tuition to 
sponsored graduate students. As a result, the university covers much of the cost associated the 
graduate student workers associated with this proposal.

Prof. Weninger teaches one course per semester, and receives course evaluations that are in the 



top 25% of the department. Depending on the timing of this award, Prof Weninger will be 
considered for promotion and tenure after year three of this project.

Prof Weninger has been a frequent sponsor in NSFs research experience for undergraduates 
(REU), and has sponsored two high school teachers via NSFs research experience for teachers 
(RET) program in the summer of 2016.

I verify that Professor Weninger is eligible for the NSF CAREER award. Professor Weninger 
holds a full-time, tenure-track faculty appointment in the Department of Computer Science and 
Engineering track at the University of Notre Dame. Professor Weninger received his doctoral 
degree in Computer Science from the University of Illinois Urbana-Champaign in 2013. 
Furthermore, Prof. Weninger is a US Citizen and is eligible for consideration of the PECASE 
award.

I urge the most serious consideration of Professor Weninger’s proposal. If I can provide any 
additional information, please do not hesitate to contact me.

Sincerely,

Kevin W. Bowyer.
Schubmehl-Prein Professor
Chair, Department of Computer Science and Engineering
University of Notre Dame



John Parkhill                                                                                                             Phone: (617) 642-3837 

251 Nieuwland Science Hall                                       e-mail: john.parkhill@gmail.com 

Notre Dame, Indiana, 46556 

  

                             

June 10th, 2016 

Dear Members of the Review Panel: 

If the proposal submitted by Tim Weninger entitled “CAREER: Principled Structure Discovery 

for Network Analysis” is selected for funding by the NSF, it is my intent to collaborate and/or 

commit resources as detailed in the Project Description. 

Sincerely, 

John Parkhill  
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June 10, 2016

National Science Foundation
United States of America

Dear Review Panel and ad hoc reviewers:

If the proposal submitted by Dr. Tim Weninger entitled CAREER: Principled Structure 
Discovery for Network Analysis is selected for funding by the NSF, it is my intent to collaborate 
and/or commit resources as detailed in the Project Description.

Sincerely,

James A. Evans
Professor of Sociology
University of Chicago
jevans@uchicago.edu
(773)834-3612
http://home.uchicago.edu/~jevans



National Science Foundation 
Arlington, VA 

2016/7/18

Dear Members of  the Review Panel: 

If  the proposal submitted by Tim Weninger entitled “CAREER: Principled Structure Discovery for 
Network Analysis” is selected for funding by the NSF, it is my intent to collaborate and/or commit 
resources as detailed in the Project Description. 

Sincerely, 

David Chiang 
Associate Professor 
Department of  Computer Science and Engineering 
University of  Notre Dame



 

 

Dear Members of the Review Panel:

If the proposal submitted by Tim Weninger entitled “CAREER: Principled Structure Discovery for
Network Analysis” is selected for funding by the NSF, it is my intent to collaborate and/or commit resources as 
detailed in the Project Description.

Sincerely,

                                                              
Alisa Zornig Gura 
NIRSEF Executive Director 



SOUTH BEND COMMUNITY SCHOOL CORPORATION

215 South St. Joseph Street South Bend, Indiana 46601

Telephone (574) 283-8000

National Science Foundation
Arlington, VA

Dear Members of the Review Panel:

If the proposal submitted by Tim Weninger entitled “CAREER: Principled Structure Discovery for Network 
Analysis” is selected for funding by the NSF, it is my intent to collaborate and/or commit resources as detailed in the 
Project Description.

Sincerely,

George Logsdon
Math Chair
Riley High School
South Bend, IN 



   
 

K ANEB C ENTER FOR TEAC HING AND LEARNING  
353 DeBartolo Hall telephone (574) 631-9146 
Notre Dame, Indiana fax (574) 631-8047 
46556-5602 email: kaneb.2@ND.EDU 
 Website: Kaneb.nd.edu 

 

July 18, 2016

National Science Foundation
4201 Wilson Boulevard
Arlington, VA 22230

Dear Members of the Review Panel:

If the proposal submitted by Dr. Timothy Weninger entitled “CAREER: Principled 
Structure Discovery for Network Analysis” is selected for funding by the NSF, it is my 
intent to collaborate and/or commit resources as detailed in the Project Description.

Sincerely,

Daniel J. Hubert, PhD
Associate Director for Learning Outcomes Assessment


