
Research Question: The authors seek to address the problem: “How can we automatically and
efficiently map high-level programs onto CAM-based accelerators while supporting diverse CAM
types and optimization objectives?”

Way of Knowing: The authors use an empirical, systems-driven methodology grounded in
compiler design and hardware simulation. They implement a custom compilation flow that
lowers high-level TorchScript code to a CAM-specific IR, enabling hardware-aware code
generation. This allows them to evaluate the correctness, efficiency, and scalability of C4CAM
through simulated performance on realistic application workloads

Evidence:

●​ Functional and performance simulation results generated via CAMASim, a simulator
linked to C4CAM, that models latency, power, and energy

●​ Comparative metrics (accuracy, throughput, energy efficiency) across applications like
KNN, HDC, and DNA read mapping

●​ Validation against hand-optimized CAM implementations and GPU baselines
●​ Benchmark datasets (e.g., MNIST, Pneumonia dataset, human genome) to quantify the

compiler’s effectiveness
●​ Architectural parameter sweeps (e.g., varying subarray sizes, parallelism

configurations) for design space exploration

Design of Evidence Collection: The paper uses a comparative evaluation strategy. The
authors generate code with C4CAM and compare it against hand-crafted CAM designs and
optimized GPU implementations using established datasets across various workloads

The core tools include the C4CAM compiler built on MLIR, the CAMASim simulator for
evaluating CAM hardware behavior, and PyTorch for frontend program specification. They
simulate performance using specifications from real CAM technologies (2FeFET CAM at 45nm)​.

Analysis Type: Quantitative analysis dominates—statistical comparison of latency, energy,
accuracy, and throughput under different CAM configurations. The authors also explore design
trade-offs using design space exploration.

Reflection: This method allows the authors to conclude that C4CAM can generate high-quality
CAM implementations automatically, achieving performance and energy comparable to
expert-crafted designs. What’s left out are broader compiler ecosystem integrations and
generalization to highly heterogeneous workloads.

Who Cares?: The authors target hardware designers and system architects, but readers
interested in compiler design, in-memory computing, and CAM optimization would also benefit.

